Increased Biomass Yield of Lactococcus lactis by Reduced Overconsumption of Amino Acids and Increased Catalytic Activities of Enzymes
نویسندگان
چکیده
Steady state cultivation and multidimensional data analysis (metabolic fluxes, absolute proteome, and transcriptome) are used to identify parameters that control the increase in biomass yield of Lactococcus lactis from 0.10 to 0.12 C-mol C-mol(-1) with an increase in specific growth rate by 5 times from 0.1 to 0.5 h(-1). Reorganization of amino acid consumption was expressed by the inactivation of the arginine deiminase pathway at a specific growth rate of 0.35 h(-1) followed by reduced over-consumption of pyruvate directed amino acids (asparagine, serine, threonine, alanine and cysteine) until almost all consumed amino acids were used only for protein synthesis at maximal specific growth rate. This balanced growth was characterized by a high glycolytic flux carrying up to 87% of the carbon flow and only amino acids that relate to nucleotide synthesis (glutamine, serine and asparagine) were consumed in higher amounts than required for cellular protein synthesis. Changes in the proteome were minor (mainly increase in the translation apparatus). Instead, the apparent catalytic activities of enzymes and ribosomes increased by 3.5 times (0.1 vs 0.5 h(-1)). The apparent catalytic activities of glycolytic enzymes and ribosomal proteins were seen to follow this regulation pattern while those of enzymes involved in nucleotide metabolism increased more than the specific growth rate (over 5.5 times). Nucleotide synthesis formed the most abundant biomonomer synthetic pathway in the cells with an expenditure of 6% from the total ATP required for biosynthesis. Due to the increase in apparent catalytic activity, ribosome translation was more efficient at higher growth rates as evidenced by a decrease of protein to mRNA ratios. All these effects resulted in a 30% decrease of calculated ATP spilling (0.1 vs 0.5 h(-1)). Our results show that bioprocesses can be made more efficient (using a balanced metabolism) by varying the growth conditions.
منابع مشابه
Metabolism and Energetics of Lactococcus lactis during Growth in Complex or Synthetic Media.
When Lactococcus lactis was grown in various complex or synthetic media, the fermentation of glucose remained homolactic whatever the medium used, with a global carbon balance of about 87%. Moreover, the nitrogen balance was not equilibrated, indicating that some amino acids led to the production of unknown nitrogen-containing carbon compounds while part of the glucose might contribute to anabo...
متن کاملMulti-omics approach to study the growth efficiency and amino acid metabolism in Lactococcus lactis at various specific growth rates
BACKGROUND Lactococcus lactis is recognised as a safe (GRAS) microorganism and has hence gained interest in numerous biotechnological approaches. As it is fastidious for several amino acids, optimization of processes which involve this organism requires a thorough understanding of its metabolic regulations during multisubstrate growth. RESULTS Using glucose limited continuous cultivations, sp...
متن کاملUptake and nitrate accumulation affected by partial replacement of nitrate-N with different source of amino acids in spinach and lettuce
As natural plant growth stimulators, amino acids are widely used to improve the yield and quality of crops. Change in enzymes activities of N assimilation (NR, NiR and GS), residual nitrate (NO3-), soluble protein content, and yield of spinach and lettuce plants were investigated under replacing 20% nitrate-N in the nutrient solution by L-glycine and blood meal amino acids. Seeds of the mention...
متن کاملMicrobial domestication signatures of Lactococcus lactis can be reproduced by experimental evolution.
Experimental evolution is a powerful approach to unravel how selective forces shape microbial genotypes and phenotypes. To this date, the available examples focus on the adaptation to conditions specific to the laboratory. The lactic acid bacterium Lactococcus lactis naturally occurs on plants and in dairy environments, and it is proposed that dairy strains originate from the plant niche. Here ...
متن کاملpH-controlled cell release and biomass distribution of alginate-immobilized Lactococcus lactis subsp. lactis.
AIMS To investigate the growth and release of Lactococcus lactis subsp. lactis in gel beads and to affect rates of cell release by changing the growth conditions. METHODS AND RESULTS The rate of release and the distribution of immobilized L. lactis subsp. lactis in alginate beads were studied in continuous fermentations for 48 h. A change in operating pH from 6.5 to 9.25 initially reduced the...
متن کامل